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AhstracL The transverse current autmrreiation function, CT(~, 1 ) .  can be represented 
as a sum of a velocity autocorrelation or 'self' term, C?,.(k,t), and a crosswelocity 
or 'distincl' term, C$( k, t ) .  By means of the langevin equation a generalized (i.e. 
kdependent) fluidity, q - l ( k ) ,  may be i n t d u c e d  which is conveniently the sum of the 
contributions from the two components of the tramvem current. We concentrate on 
C&(k,t) and for the first lime compare a theoretical prediction of this quantity for 
both liquid Rb and liquid Ar with'computer simulation data. The success of the theory 
suggats a model for the associated Buidity, q;'(k). We show how to use it to predict 
the diffusion coefficient of a number of simple liquids, with an estimated accuracy of 
U) percent or better, given the shear viscosily coefficients as input data. A salisfactoly 
representation of the distinct component, q;'(k), is more difficult to achieve. but we 
discuss the general features which are revealed ty computer simulation studies. 

1. Introduction 

An investigation of aspects of the transverse current autocorrelation function is re- 
ported. The emphasis is on  achieving a better understanding of the associated gener- 
alized fluidity coefficient, v-I(k). Both theory and computer simulation are employed 
and the results are used to calculate the self-diffusion coefficient of a liquid, given 
the hydrodynamic shear viscosity coefficients as input data. 

The theoretical framework is presented in the next section and the single-particle 
components in the transverse current investigated in detail. The conclusions suggest a 
model for ~ ; ~ ( / c )  which is described in section 3 and its application to the prediction 
of the diffusion coefficient of liquids is demonstrated. 

2. Ransverse current and generalized fluidity 

The momentum current density fluctuation in a simple liquid is defined as 
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where Q signifies a Cartesian component and we may introduce the transverse current 
autocorrelation function, 

S F Dully et al 

C T ( k , l )  = ( i? .k(o) jz( t ) ) /N (1) 

in which, with k along the z axis, a denotes z or y. Clearly, the transverse current will 
consist of velocity autocorrelation or self terms and contributions from the correlation 
of the velocities of different or distinct atoms which arise from momentum transfer. 
We refer to these components as C + ( k , t )  and C$(k, 1 )  respectively. 

It is now well known that, by means of the generalized Langevin equation, the 
Laplace transform of this correlation function, cT(k,  z). may be usefully expressed 
in the form 

k T ( k , z )  = CT(k,t = O ) / [ z + ( k ' / n m ) f j ( k , z ) ]  (2) 

n being the number density and m being the mass (see e.g. Hansen and McDonald 
1986). In an obvious extension of the hydrodynamic limit of this expression, 
f j (  k ,  z = iw) is interpreted as a wavevector- and frequencydependent shear viscosity. 
We shall be interested in the generalized viscosity, q(k) = f l ( k , z  = 0 ) ,  although 
from our point of view it is more convenient to think in terms of the gencralized 
fluidity, q-'(k). This can be obtained from CT(k, I = 0) through the equation 

q-*(k) = kzCT(k ,  z = 0 ) / 7 ~ ? i ~ C , ( k ,  t = 0) = ?7;'(k) + q a ' ( k )  (3) 

and is conveniently the sum of the self and distinct contributions in terms of C$(k, t )  - .  . 
and C$( k, 1 ) ,  respectively. The following limits are known exactly (Balucani er a1 
1985): 

q;'(k -, 0 )  = kZ D / n k B T  

q-'(k + CO) = k ( 2 m n Z k B T / r ) - 1 / 2 .  

One expects the sell-correlation terms in the transverse current to begin to dominate 
at large enough Wavevectors and it has been demonstrated that viscoelastic theory 
fails to give an adequate account of such terms (Gaskell and Duffy 1989). Now the 
separate contributions to the transverse current are defined by the equations 

CT(k,t) = (m$'(O)mtf(t)exp[ik. ( r l ( t )  - ~ ' ( o ) ) ] )  

+ (mv;(o)Cmv;(t)explin:.(~,(l) -rl(0))l)  
1#1 

EC+(k , i )+C' , (k , t ) .  (6) 

We concentrate here on the evaluation of the self term. A quantitatively accurate 
expression for the velocity autocorrelation function in a dense liquid has been derived 
by introducing the concept of a veIocity field at a microscopic level. This we write 
as V(T,~) = Civ ; ( t ) f ( l r  - r i ( t ) l ) .  The 'form factor', f ( r ) ,  is constructed so 
that (i) the velocity field is essentially constant across an atomic diameter and (i) 
the macroscopic sum rule ? z J d 3 R V ( r , t )  = C,v;(t) is satisfied. For all practical 
purposes, both requirements are met by choosing a step function form for f ( r ) ,  
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whose width, a, is obtained through the condition h a 3  = n-’ (Gaskell and Miller 
~ ~~~~~ 

1978). Adopting the same technique to the eva1uati;n of C+( IC, t);we obtain (Gaskell 
and Duffy 1989) 

C$(lc,t) = (mv;(0)mv;(t)exp[ik-(rt(t) - ~ ~ ( 0 ) ) 1 )  
1 
- 2 1r3 / d ” q  f ( q ) [ C d q 7  t ) (c i . * )2+ Cdq, t ) ( l -  (g.*)21Fs(lk-q(, t ) .  

(7) 

In the above equation CL( q, t )  is the longitudinal current autocorrelation function 
and F , ( q , t )  and f ( q )  are the Fourier transforms of the single-particle probability 
density and f ( r )  respectively. 

o.2 t \ 
-0. 0.0 2 WO ... 

t ( 1 0 - 1 2  5 )  

Figure 1. The self term of the LransverSe cumnl. C‘ k. t ) / r n k B T .  in liquid rubidium 
as a funclion of lime in picoseconds The full cuwe IS the lheoretical prediction from 
(7) and the cmsses represent exact MD data. 
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Flgure 2. The Self term of the L l i l ~ S V e m e  currenl, C;(k, t ) /mkeT,  in liquid Nbidium 
as a function of time in pimemndf The full cume is the theoretical prediction from 
(7) and the mosses represent exact MD data. 
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We have also carried out a molecular dynamics (MD) simulation study of the 
transverse current autocorrelation function in both liquid rubidium and argon models. 
The data have been analysed into the self and distinct components so that a direct 
comparison of the above theorctical expression with MD data is possible. In the 
rubidium simulation 250 particles interact through the effective pair potential of Price 
et al(1970), which has been tested successfully in the liquid phase (Rahman 1974a, b). 
The mean temperature of the system is 316.8 K and reduced density no3 = 0.904 
(a = 4.4048 8, being the distance at which the potential is Erst zero). The data and 
the theoretical expression for C + ( k , f )  are compared in figures 1 and 2. Because 
they are convenient, we use viscoelastic models for C,(q, 1 )  and C,(q, t )  in the 
evaluation of (7) and the Gaussian approximation for < ( q ,  t) (Gaskell and Dum 
1989). Bearing in mind the limitations of viscoelastic theory the agreement is good, 
particularly with regard to the phase of the oscillations. 

1.0 

0. 8 

0.6 

0.4  

0.2 

0. Q 

-0.2 

La = 3.7194 

. . . . . . . 

t [ l o - ' *  5 )  

Figure 3. The self term of the Iransvem current. C+(k, t),"ksT, in liquid argon as 
a funclion of lime in picoseconds. The lull c w e  is lhe lheorelical prediction from (7) 
and the c r o w  represent exact MD data. 

k a  = 7.4388 

0 1.2 1.4 1.A 1.8 2.0 

t [lo'" 6 )  

Figure 4. The self term or the transvem curreni. C+(k, t ) / m k e T .  in liquid argon as 
a function of lime in picoseconds. The lull c u m  is Ihe theoretical prediction from (7) 
and Ihc crases rcpmenl exact MD data. 
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In figures 3 and 4 we show equivalent results for a liquid Ar model. The pair 
potential used in this case in the MD study is of the familiar Lennard-Jones type, the 
mean temperature being 94.6 K and n$ = 0.905 where U = 3.405 8, The number 
of particles used was 864 and the potential was truncated at T-= = 2 . 5 ~ .  It should 
be noted, however, that the viscoelastic model for the currents is less satisfactory 
in argon than in rubidium. As a consequence a rather subtle feature of the details 
of C $ ( k , t )  which are revealed by the MD data is not reproduced by the theory. 
We refer to the 'shoulder' or  'plateau' in the data just beyond the first minimum in 
C $ ( k , t ) .  This is shown in both figures 3 and 4, in contrast to the results in Rb 
where further oscillations are discernible beyond the first minimum. 

We now discuss a model for the generalized fluidity, q; ' (k ) ,  arising from the 
theory and exploit it for the prediction of the selfdiffusion coefficient. 

3. Diffusion model for ~;l(k) 

The success of the theoretical expression for C $ ( k , t )  has an implication which 
suggests a model for 7 q 1 ( k ) .  The latter may be obtained as 

qS-'(k) = k 2 C + ( k ,  z = 0 ) / 7 2 7 7 2 G ( k , ?  = 0) = C $ ( k , z  = o)/77nI*kBT (8) 

where 

C + ( ~ , Z  = 0) = WZ- d t  (v;(O)v~(f)exp[ik(z,(1) - zl(0))]). LW 
With reference to (7), because the time decay of C, and C, is much more rapid 
than that of F, for the predominant wavevector range in the integral (determined by 
the width of j ( q ) ) ,  we may safely ignore the q dependence in F,. In this case the 
equation becomes 

The prefactor of F,(k, t )  is essentially the velocity-field expression for the velocity 
autocorrelation function (Balucani et nl 19S.5). The implication is that we may usefully 
decouple the velocity terms in C$(k, 1 )  and write it as 

t ,  S3 m 2 ( v ~ ( o ) v ; ( 1 ) ) F , ( k , t )  = ( k B T / m ) $ ' ( t ) E ( k , t )  (9) 

where $'( t) denotes the velocity autocorrelation function normali?&d at t = 0. Hence, 
within this approximation 

Clearly 
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In the large k limit, F%(k, t) assumes the ideal gas value and decays so rapidly 
with respect to the velocity autocorrelation function that in the integrand only 
+(t -+ 0 )  = 1 is significant. The result is that qL1(k -+ 00) = k(2mn2kBT/rr)-' /2.  
Both these limits are in agreement with exact results given in (4) and (5).  

We propose to use the Gaussian approximation for F&k, t ) ,  which is completely 
specified by a knowledge of +(t) ,  that is 

t 

F s ( k , t )  = exp -(k2kBT/m) 1 d s ( t  - s)+(s)). ( (12) 

In a normal liquid, non-Gaussian effects are found to be quite small making this 
expression an excellent approximation for the self-correlation function (Hansen and 
McDonald 1986). Because the predicted results for v ; I ( k )  depend on the integrated 
value of the velocity autocorrelation function, we may hope that the fine details of the 
latter's time dependence are not too important. Hence the name diffusion model. We 
therefore propose to use a rclatively simple expression for $ ( 1 )  derived from an as- 
sumed exponential decay of its associated memory function, M ( t )  = wg e x p ( - t / r ) ,  
we being the Einstein frequency (see e.g. Hansen and McDonald 19%). The pre- 
factor guarantees the short-time behaviour of the velocity autocorrelation function, 
but more importantly, the relaxation time is chosen so that its integrated value cor- 
rectly reproduces some chosen value for D. With this choice of memory function 
both +(t) and the exponent in (12) can be obtained analytically as a function of wB 
and D. 

20 
24 I 

Figure 5. Results obraincd using the dillusion 
model for liquid rubidium Cor different wavevec- 
tors ka. The smooth curve is lhe self term of the 

0 2 4 6 8 10 generalised fluidity q;'(k) (IO) and the crosses 
denote the exact MD data for q ; ' ( k ) .  

0 

ka  

In figure 5 we demonstrate the applicability of this simple model of +(t )  for the 
liquid Rb system referred to above. Results for q ; I ( k )  obtained from (10) using 
this prescription for + ( l )  (with a value for D obtained from MD data) are compared 
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with exact values of q;'(k) obtained from MD data for C;.(k, t )  (see equation (8)). 
The agreement is very good. Therefore, we have an expression for q;'(k) which 
has an explicit dependence on the self-diffusion coefficient. It satisfies both the large 
and small k limits and we believe it will give a satisfactory representation for all 
wavevectors, for the reasons discussed above. In figures 6 and 7 we compare q;'(k) 
for Rb and Ar obtained using the diffusion model with exact computer simulation 
data for the total generalized fluidity q-'(k) (equation (3)). In this case, the MD Rb 
study was performed at a temperature of 332 K, all the other state points being the 
same as those previously discussed. The details clearly establish the predominance of 
the self term in the generalized fluidity for kcr 2 3. The contribution from qil(k) 
dominates at small 12 and is, we believe, responsible for the structure observed in 
the computer data at larger 12 which produces the fluctuatiom in q( k )  about the self 
term. 

0 2 4 6 a 10 

ka 

Figure 6. The total generalised Auidily q - ' (  k )  
and dinusion mcdei lor n;' ( I ; )  in liquid rubidium 
as a function of wavevector ko. The full C U N ~  

is the self term q ; ' ( k )  obtained from (10) and 
the crosses denole the exact MD data for the total 
generalid fluidity q-'(kj. 

- 
0 

0 2 4 6 E 10 

k o  

Figure 7. The total generalised fluidity q - l ( k )  
and diflusion model lor q;'(k) in liquid argon 
as a funclion of wavevector ko. The full cutve 
is the self term q;'(k) obtained from (IO) and 
thc crosses denote the emci MD data for the total 
generalised fluidity q-' ( k ) ,  

It has been demonstrated before that the velocity4eld approach to velocity cor- 
relations in liquids leads to a relationship between D and q ( k )  (Balucani er d 1985). 
This is essentially a microscopic version of the Stokes-Einstein equation and takes 
the form 

m 

D = (nkBT/37rZ) /  0 d k i ( k ) q - ' ( k ) .  (13) 
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We now exploit the diffusion model for q;'(k) to predict values of the self-diffusion 
coefficients in liquids, given the shear viscosity coefficients as input data. A relatively 
simple representation of the distinct component, qr'(k), is much more difficult to 
obtain. Although q;'(k = 0)  = q-' (q being the shear viscosity coefficient), the 
work of Gaskell and DuQ (1989) shows that it decays rapidly as k increases. At 
the same time q;'(k) increases quadratically with k. The combination of the two 
components makes q-'(k) rather flat at small wavevecton and thereafter the self 
term is predominant. This suggests the following model for the fluidity of a dense 
liquid, 

where 0 denotes a step function and kc is a chosen as the wavevector at which = 
q;'(k). When the diffusion model for q;'(k) is used in (14) the expression for the 
generalized fluidity is completely specified in terms of the viscosity and diffusion 
coefficients. Substitution in (13) leads to an equation for D which is solved for a 
given 11, T and q. Some results are shown in table 1. 

Table 1. Predicled selfdillusion cDellicients for SOnie simple liquids. MD or experimental 
data, where available. are shown for comparison. The Einstein frequency corresponding 
to the particular sptem or inlercsl was used in the calculation ol D. 

Rb 332 0.01058 
332 0.01058 
319 0.01058 
312 0.01038 

U 453 0.04402 

Na 371 0.02428 

K 337 0.01732 

Ar 84.5 0.021 32 

5.5 (MD) 
6.0 (apt)  
6.3 (apt) 
6.7 (exPC) 

6.6 (expl) 

7.0 ( a p l )  

5.4 (expt) 

2.9 (apt)  

D x lo5 Dx IOs 
(emz s-') (cmzs-')  

3.04 (theory) 2.66 (MD) 
2.78 (theory) 
2.57 (theory) 2.47 (MD) 
230 (theory) 

5.53 (theory) 6.1 ( a p t )  

3.33 (rheoty) 4.2 (apt)  

3.38 (theory) 3.7 (expt) 

1.76 (theory) 1.53 (apt)  

, ,  , ...,.. , , "  ............................... 

4. Conclusions 

This piece of work is part of a continuing investigation of the wavevectordependent 
fluidity of a simple liquid and its relationship to the selC-diffusion coelficient. We 
have established an accurate model (the ditiusion model) for the self-component, 
q*-'( k), which requires only the Einstein frequency and self-diffusion coelficient to 
specify it completely. I t  shows a smooth dependence on 12 which is confirmed by 
computer simulation data on rubidium and argon. The distinct component, qa'(k), 
is less easy to characterize. It tends to decay rapidly with wavevector but has more 
structure, which has been demonstrated explicitly and which makes a representation 
more difficult to achieve. An oversimplified model for the fluidity has, nevertheless, 
been proposed, enabling the diffusion coelficient to be successfully calculated through 
a microscopic form of the Stokes-Einstein equation. 
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